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)Considera system of ordinary differential equations of the form

where f and 'V are periodic in t, V is periodic in the/components of

q - (q 1 ,...,q), and the mean value of f vanishes. By/showing that a

corresponding functional is invariant under a natural acticn, a simple

variational argument yields at least n + 1 distinct periodic solutions of

(*). More general versions of (*) are also treated as is a class of Neumann

problems for semilinear elliptic partial differential equations.
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ON A CLASS OF FUNCTIONALS INVARIANT UNDER A Zn ACTION

*

Paul H. Rabinowitz

Introduction

Consider the system of ordinary differential equations

(0.1) + V q(t,q) - f(t)

where q (ql,...,qn) c R and V satisfies

(VI) V CI(R x RN,R) and is T periodic in t and Ti periodic in qi'

1 i n.

Suppose further that f satisfies

(fl) f c C(R,Rn ) and is T periodic in t

and

T
(f) f f(t)dt -0.2) If] =¥fftd

0

Note that if q(t) is a solution of (0.1), so is q(t) + (kiTI ....,knTn) for

all k = (k1,...,kn) c in. It was shown by Mawhin and Willem 1], Serrin and

Pucci (2-3], Li (4], and Franks [5] that if n = I and V is independent

of t, (0.1) possesses at least two T periodic solutions which do not

differ by a multiple of T I. In (5], the proof relies on a generalized

version of the Poincar6-Birkhoff Theorem while 11-4] use variational

arguments. Part of the difficulty in treating (0.1) in [1-4] is caused by the

fact that the corresponding functional:
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Tl

(0.2) 1(q) f [_ 1412 - V(t,q) + f * q]dt

0 2

defined on the natural Sobolev space associated with (0.2) does not satisfy

the Palais-Smale condition, a compactness criterion very useful for

variational problems and henceforth denoted by (PS).

The purpose of this note is to show that ir fact if appropriately

interpreted, the variational problem does satisfy the (PS) condition. The

simple observation that makes this statement precise together with standard

techniques leads to a generalization of the above results:

Theorem 0.3: Under the above hypotheses on V and f, (0.1) possesses at

least n + 1 "distinct" solutions.

What is meant by distinct will be explained in 1i. Theorem 0.3 will be

obtained from a more general result involving a Lagrangian of the form

L (q,4) - - L(t,q)4 . 4 - V(t,q) + f(t) ° q

where L(t,q) is a symmetric positive definite matrix possessing the same

periodicity properties as does V. Actually as will be shown in 5i, when L

is independent of t and q and f - 0, this more general result can be

obtained from a theorem of Conley and Zehnder (6, Theorem 3]. They were

mainly interested in the much more difficult case of indefinite L.

In 1i, the generalizations of Theorem 0.3 will be carried out. Some of

the technical details will be given in §2. The ideas used in §i and 2 can

also be applied to a class of Neumann problems for semilinear elliptic partial

differential equations. Consider

(0.4) -Au - p(x,u) + h(x), x e fn
au-- 0, x C ail •

Here n denotes a bounded domain in Rn with a smooth boundary and outward

pointing normal v(x) and a v(x) * Vu. Suppose p(x,&) - aP(x, ) andav
I nj denotes the volume of a. Then we have
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Theorem 0.5: Suppose P satisfies

(pi) C C2 (Q~ x RR) and P(x,& + r) P(x,4) for all (x,C) Q £ x R

and h satisfies

(h 1 h c CI( ,R),

and

(h 2  [h] - T-1 h(x)dx - 0.

Then (0.4) possesses at least two classical solutions which do not differ by a

multiple of r.

The proof of Theorem 0.5 will be carried out in §3. We thank Ed Fadell

and Sufian Husseini for helpful conversations.
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J1. A generalized version of Theorem 0.3

let E - WI' 2(R, R) denote the Sobolev space of T periodic functionsT

with values in Rn under the norm

T

1q, - (f 1412dt + [q]2 )1/2
0

Suppose L satisfies

(L I ) L c CI(R x Rn,Rn 2 ) is a symmetric matrix with L(t,q) being T

periodic in t and Ti periodic in qi 1 i n

and

(L 2 ) there is an a > 0 such that L(t,q)& a IE12 for all t c R and

q,F £ .

Suppose V and f satisfy (Vl) and (fl)-(f2 ) respectively. Let q c E.

Then

T
(1.1) I(q) - [2 L(t,q)4 - 4 - V(t,q) + f • q]dt

0

is well defined and the argument of [7, Prop. BIO] shows that I c CI(ER)

and critical points of I are classical solutions of

(1.2) L- (L(t,q),j) - - -L (t,q)4 - 4 + Vq(t,q) - f(t) •
dt 2 3q q

Suppose Q,q c E and

(1.3) Q - q - (k1T1 ,...,knTn)

where k - (kl,...,kn) c 2P The properties of L, V, and f then imply

(1.4) I(Q) - I(q) •

A functional J on E satisfies (PS) if any sequence qm such that I(qm)

is bounded and I'(%m) + 0 possesses a convergent subsequence. Equation

(1.4) shows that I does not satisfy (PS) on E. However, (1.4) implies I

possesses a free Zn action on E and this will provide the topological

-4-



basis for an existence result for (1.2). Before stating it some further

preliminaries are required.

We introduce an equivalence relation - on E via Q - q if (1.3)

holds for some k c Zn. Let E = E/- with the corresponding quotient

topology. One could now consider I on E. However, we find it more

convenient technically to work on E itself and proceed as follows. For

k cen set Ok - (klTi,...,knTn). For q c ln, let gk(q) = q + Ok . Then

G (gklk c Zni is a group of mappings of E onto E and I is invariant

under G, i.e. I(g(q)) = I(q) for all q c E and g G. A set A C E is

called invariant (with respect to G) if g(A) C A for all g e G. A is an

invariant set if and only if there is a set - C Z such that A/- = -.

With the aid of the above notions, a generalized version of Theorem 0.3

can be stated.

Theorem 1.5: Let V satisfy (V1 ), f satisfy (fl)-(f2 ) and L satisfy

(LI)-(L2 ). Then equation (1.2) at least n + 1 distinct solutions

Q1,...,Qn+l, i.e. for i " J, Qi # g(Qj) for all g c G.

These solutions will be determined as critical points of I by means of

a minimax argument. To characterize the corresponding critical values of I,

let A C E be closed and define

(1.6) rk - (A C EIA is invariant and cat k)

In (1.6), catxY denotes the Ljusternik-Schnirelmann category of the closed

met Y in the topological space X. (See e.g. [8].)

Lemma 1.7: rk 1 , 1 4 k 4 n + 1.

Proof: It suffices to show rn+I Y 0' Let A - q Ejq - [q]). Then A is

isomorphic to ln and A/- to Tn . Therefore E/- - Tn S F where F = Ai,

the orthogonal complement of A. Since F is a linear space, it is

contractible to a point in itself. Therefore by standard results on
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Ljusternik-Schnirelmann category - see p. 459-460 of (9]

(.)cat iE= cat iT~ S (0)1 catnn T - n + 1

Nov n + 1 critical values ck of I can be defined as

(1.9) ck = inf max 1(q), 1 4 k 4 n + I
B-rk qCE

To prove Theorem 1.5, it will be shown that each of the numbers Ck is a

critical value of I and there are at least n + 1 corresponding critical

points. To carry out the proof some further preliminaries are required. A

mapping 'F E + E is called eguivariant with respect to G if

a og -g o for all g eG. For s cR, let A.= {q c EII(q) 4s) and

KS - {q c EII(q) - s and I'(q) -01. The following version of a standard

"Deformation Theorem" is needed:

there is an e > 0 and 1~£C([0,11 x E,E) such that

1 0 n(O,q) - q for all q E

20 r(t,q) is equivariant for each t c [0,1]30 

1(q,A 

0~ 
e\O) C 

A 
-

40 If Kc - f(1,Ac+c) C ce

The proof of Proposition 1.10 will be given in 12.

Completion of proof of Theorem 1.5: By 10 and 2* of Proposition 1.10,

wn(l,e) in homotopic to the identity map and is equivariant. Hence by Lemma

5.3 of [81, rn(1,) : rk rk, 1 C k 4n + 1. Now the conclusions of Theorem

1.5 follow in a standard way: suppose ck @e ck+p c- Then

(1.11) cat-Kc )p+1 1

for if not, by the proof of Proposition 1.10 and Lemma 5.6 of (8], we can find

a uniform neighborhood 0 of K0  such that cat E * p + t. Choose

-6-
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B c rE such that

(1.12) max i 4 c + e
B

By the subadditivity property of category - [8, Lemma 5.3], cat9 > k + p -
• E

p m k so B\O c rk as is n(1,B\O) B 1. But by (1.12) and 30 (or if

p - 0, 40) of Proposition 1.10,

(1.13) max I c - ,
B.,

contrary to the definition of c = ck. Finally, if p > 1, the definition of

category implies K contains infinitely many distinct points completing thec

proof.

Remark 1.14: In [4], Li proved an abstract theorem about critical points of

periodic functionals which the above arguments can be used to generalize and

put in a more natural form.

Remark 1.15: If e.g. L and V are independent of t and f = 0, the

hypotheses and therefore conclusions of Theorem 1.5 hold for all T c R.

However, by the periodicity properties of V, it belongs to C (Tn,R).

Therefore V possesses at least catTnTn = n + 1 distinct critical points

which will be equilibrium solutions of (1.2). Thus it is not clear that there

need exist any time dependent solutions for this special case without more

structure for V. In this regard, see Theorem 5.2 of [4] when L = id and

n-i1

Remark 1.16: In (6], Conley and Zehnder proved that if (i) H(t,p,q) c C2(R x

le x Rn,R) where H is 1-periodic in t and the components of q, and (ii)

there is an R > 0 such that for IPI > R,
I "

B(t,p,q) = - Mp - p + a - p

where a c 1P and M is a symmetric nonsingular time independent matrix,

then the corresponding Hamiltonian system possesses at least n + 1 distinct

-7-



periodic solutions. This theorem applies to a subclass of the problems

treated here including Theorem 0.3. Note however, that the Conley-Zehnder

result permits indefinite matrices M. Assuming for the moment its

applicability liere to Hamiltonians of the form

(1.17) H 1Mp p + V(t,q) ,2|
observe that the corresponding Hamiltonian system is

(1.1) -Vq =Mp

Therefore

(1.19) t M-  -V
dt q

Choosing M - L- 1, (1.19) now gives (1.2).

To applicability of the Conley-Zehnder result is not quite immediate here

since (1.17) does not satisfy condition (ii). However, using a trick, a

modified Hamiltonian can be constructed which satisfies (ii) and whose

solutions satisfy (1.2). For simplicity we will just verify this for (0.3)

where M = id. For this case by (1.2) or (0.1), if q is a T periodic

solution,

(1.20) Iql € max IVq(t,&)l K1 ( K, + max JV(t,)J K
L t n , n -

Simple estimates then show

(1.21) *q1 ( Tiqw < 2TK
L L

Let V C C'(R,R) such that T(s) - I if s 4 (1 + T)K = K2 , T(s) 0 if

S ) 2K2 , and -1 < V'(s) < 0 if S C (K2 ,2K2 ). The Hamiltonian

(1.22) H(tpq) J ipI2 + V(Ipl)V(t,q)
2

satisfies i) and (ii). The corresponding Hamiltonian system is

(1.23) =-Vq,, P + VP.

If (p,q) is a T-periodic solution of (1.23), the second equation implies

-8-



(1.24) (p] - (Va , I

By the definition of K2 ' 19P 4 1 and therefore

(1.25) p 1I <~i ( K.

Since

(1.26) P(t) = p] + ~ (f f (s)ds)dT
0 T

(1.26), (1.23), and (1.25) imply

(1.27) IpI 4 K + TK 4 K2.
L

consequently 9(IpI) 1, p(Ipj) 0, and any T-periodic solution of the

modified equation satisfies (0.3).

%I
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12. The proof of Proposition 1.10

A mapping n c C([0,1] x E,E) and E > 0 must be found satisfying 10-40

of Proposition 1.10. Much of this construction is standard and therefore we

will only indicate the modifications that must be made in the proof the "usual

case" that can be found in [7, Appendix A].

The mapping n is determined as the solution of an ordinary differential

equation of the form

(2.1) Aa = W(n)(n)dt

where w is a cut-off function with 0 < w < 1 and T is a pseudogradient

vector field for I'. In [7), the choice of c and construction of w

depend on the fact that I satisfies (PS). As was already noted, this is not

the case here. Therefore we must show that because of the invariance of I

under G, the proof works nevertheless. Heuristically, we will show that

Il satisfies (PS). First the form of I' must be studied. Let D denote
E*

the duality map from E to E %

Proposition 2.2: Under the hypotheses of Theorem 1.5,

I'(q) = D(P 1 (q) + P(q))

where P is compact and

d- P1(q) L(t,q)j - tL(t,q)].

Proof: By (1.1),

T n
(2.3) I'(q)-p = f [Tq . + L " i -V • f 9dt

0 i q

L'et

T
II(q) f - T4 $dt

0
T n(2.4) 12(q) q =7 L 4 49 " idt

0 i-I
T

I3 (q)9 - f (-V + f) V ydt
3 q0

-10-
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By the argument of Proposition B.10 of (7], 13 (q) DP3 (q) where P3 is

compact. Next consider 12 (q)y. It has the form

T
(2.5) 12 (q) y f b • qdt

0

where b b(t,q,4) c L1. Since 12 (q) C E*, there is a unique

x + y ER F such that

T
(2.6) 12 (q)9 = f * dt + * [9]

0

Comparing (2.5)-(2.6) shows y is a weak solution of

(2.7) - = b - [b]

Hence y c W2 ,1 and

(2.8) ly l 12,1 4 21b i L
W L

Similarly = T(b] and

(2.9) Itl 4 TIb

Let P2 (q) = y(q) + (q). The form of b shows that for q belonging to a

bounded set in E, P2 (q) will be bounded in W2' '. Hence P2(q) and

12 (q) = DP2 are compact on E.

Finally, consider I1 (q)qi. As was the case with I2(q),

T
(2.10) ll(q)9 = f w * ;dt

0

where w c F and there is no mean value term due to the form of I1(q).

Comparing with (2.4) yields

(2.11) ,

Now (2.11) together with (w] - 0 determines w P1(q). Setting

P " PI + P2 ' the result follows.

Lemma 2.12: Let K - (q KcIO 4 (qi] 4 Ti, I < i n). Then K is

compact.

)) -11-



Proof: Suppose (Qm) C K . Let QN 9m + Ym where C. c and Ym c F.

The form of I and (L2 ) imply that (Ym) is bounded and the definition of

X shows that (Em) is bounded. Since (Qm) is bounded, along aC

subsequence, 'Im converges weakly in E and strongly in LO to Q and

P(Qm) converges in E. Therefore from Proposition 2.2,

(2.13) Om - L-1 (tQm) [T - ' f L(TQm)kdT - d

0

Now equation (2.13) shows that along this subsequence QM converges in L2

and Q. converges in E and I'(Q) - 0. Hence Q c K .c

Completion of the proof of Proposition 1.10: In the proof of the version of

Proposition 1.10 given in [7], (PS) is used in two places. The first is in

showing that Kc is compact and therefore for any neighborhood 0 of Kc ,

there exists a uniform neighborhood N6 - N 6 (Kc) 
= {q c Eliq - K I 1 61 C 0.

For the current setting, if 0 is an invariant neighborhood of Kc , since

X CKc and is compact, there is a 6 > 0 such that 0D N (Kc). Thereforec 6

by the invariance of 0,

(2.14) 0 j U g(N 6 (K)) = N 6 (Kc) .

gcG

The second place at which (PS) is required in [7] is in showing that

there exists constants b,c > 0 such that if q c A - A \(A U N6/8 ),

(2.15) lI'(q)l > b

Arguing indirectly, (2.15) follows for the subclass of q c A such that

0 4 [q] 4 Ti, I 4i 4 n by an argument paralleling the proof of Lemma 2.12

which will be omitted. Since A. and N6/8 are invariant sets, (2.15) then

holds for all q £ A.

Given (2.14)-(2.15), the argument of Theorem A.4 of [7] yields 1°, 30-40

of Proposition 1.10. It remains only to show that by an appropriate

construction of n(t,.), 2* also holds. Since I is invariant under G,

-12-
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i.e. 1(90 - I(q + 8 k ) = I(q) for all gk

I(2.16) II(q + ek ) = I'(q) - I(gk q)

for all 9k c G. The invariance of I' under G allows us to slightly

modify the construction of Lemma A.2 of [7] to obtain a pseudogradiant vector

field 7 for Z' which is also invariant under G. Also the definition of

w in [7] shows that if I is invariant under G, so is w. Thus the right-

hand side of (2.1) is invariant under G. We claim n(t,*) satisfies 20,

i.e. r(t,gq) = gn(t,q) for all t c (0,1], g c G, q c E. Indeed set

w - gn(t,q). Then w = n(t,q) + Ok for some k c Zn and

At i = V( ) = c (gn)Y(gn) = W(w)(w)
(2.17) dt dt

w(O,q) = gq

Therefore w(t,q) = n(t,gq) = gn(t,q) so 2° holds. The proof is complete.

-13-



j3. The Neumann Problem

In this section, the Neumann problem

- = p(x,u) + h(x), x £

u-0, xC an

will be studied and Theorem 0.5 will be proved. The ideas used here are so

close to those of §1-2 that we will be sketchy.

Let E = W1'2(). For u c E, define

(3.2) 1(u) = f [! Ivul 2 - P(x,u) - h(x)u]dx

where P, h, 9 satisfy the hypotheses of Theorem 0.5. The proof of

Proposition B.10 of [7] shows I c CI(E,R). By e.g. (10, Chapter 2] critical

points of I are classical solutions of (3.1). Note that I(u + kr) = I(u)

for all u C E and k C Z via (pl) and (h2 ). Therefore I does not satisfy

(PS) on E. For u,v c E, we say u is equivalent to v, u - v, if

u - v - kr for some k c Z. Let E =E/. As in J1, A C E is an invariant

set if and only if there is an R C E such that A = A/-. Again E can be

identified with R 0 F where F is the orthogonal complement of span {I}

in E and E can be identified with SI * F.

The argument of Lemma 1.7 shows that

rk - {A C ElctX k} > k)
E

for k - 1,2. Noting that (f IVuI 2dx) 1/ 2 is a norm on F and that
a

(3.3) I'(u) - D(u - [u]) + P(u)

where D again denotes the duality map and P is compact (see Proposition

B.10 of [7]). Therefore there is an analogue of Proposition 1.10 here which

implies that

(3.4) c k - inf max 1(u), k - 1,2
AcF k u A

-14-



is a critical value of I, k - 1,2 with a multiplicity result if c, ' c2.

This completes the proof of Theorem 0.5.

Remark 3.5: If in (0.6), u is an n vector, p(x,u) = VuP(x,u), and P

is periodic in the components of u, a version of Theorem 0.5 analogous to

Theorem 0.3 obtains.

Remark 3.6: An alternate way to prove Theorem 0.5 is to obtain a first

solution as a minimum and a second using a variant of the Mountain Pass

Theorem as in El]-[4] for (0.1) with n = 1. Such an approach, however, does

not extend to cover the vector case mentioned in Remark 3.5.

Remark 3.7: Theorem 0.5 can also be extended by replacing -6 by a more

general second order divergence structure uniformly elliptic operator with

appropriate changes in the boundary conditions. A similar result also obtains

if 0 is replaced by a rectangular domain and the Neumann boundary conditions

by periodic ones.
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